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Crossover behaviour between Gaussian and self -avoiding 
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Chicago, Illinois 60637, USA 
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Abstract. The Gell-Mann-Low style conformational space renormalisation method for 
polymers is generalised to describe the crossover between the random walk and self- 
avoiding walk limits, i.e., to describe the excluded volume dependence. Explicit calcula- 
tions are provided to order E = 4 - d  (d  the spatial dimensionality) for the full end-to-end 
vector distribution function, the coherent elastic scattering function, the second virial 
coefficients and (R2)  and (S'). The crossover functions are required therefore to exhiQit 
the correct asymptotic limits of both the random and self-avoiding walks. The theory 
demonstrates that the latter choice implies that the expansion factors, a' and a:, for the 
mean square end-to-end vector (R2)  and radius of gyration (S'), respectively, are not 
universal functions of the single scaling variable describing the strength of the excluded 
volume interactions. Nevertheless, much of the available experimental data on long chain 
polymers appears to involve small renormalised dimensionless excluded volume, and 
therefore a* and a: are approximately universal quantities. Comparisons between our 
theoretical predictions and experimental data on the second virial coefficient and nf  show 
good agreement. 

1. Introduction 

The polymer excluded volume (or self-interaction) problem is one which can be studied 
by the use of renormalisation group methods. The present paper extends the conforma- 
tional space renormalisation group method, developed in the preceding papers I11 
(Oono et a1 1981) and V (Ohta et a1 1981), to the calculation of the crossover 
behaviour between the Gaussian chain and self-avoiding chain limits. This renormali- 
sation method does not rely on formal analogies between polymer systems and 
magnetic systems (de Gennes 1972, Emmery 1975), and it utilises a monodisperse 
chain length distribution. This aspect of our renormalisation group approach is 
important because there is no simple polymer-magnet analogy for dynamical problems. 
However, as is demonstrated in the work of Yamazaki and Ohta (1981) on the effect 
of elongational flow on a polymer chain, the present methods enable the development 
of a unified renormalisation group theory of both static and dynamic properties of 
polymer systems. 

In the preceding papers (Oono et a1 1981, Ohta et a1 1981) we consider the 
end-to-end vector distribution function and the static coherent scattering functions 
only in the self-avoiding polymer limit. Experiments rarely are performed in this 
t Permanent address: Department of Physics, University of Illinois, Urbana, Illinois 61801, USA. 
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idealised limit of fully developed excluded volume, and here we generalise these 
calculations to describe the dependence of these distribution functions and the second 
virial coefficient upon the strength of the excluded volume interaction. 

The end-to-end vector distribution and the coherent scattering function have never 
been calculated previously in the crossover region, but the second virial coefficient 
A2 has already been evaluated by several authors (Burch and Moore 1976, Elderfield 
1978, 1980, Lawrie 1976). The most detailed crossover calculation of A2 and the 
mean square end-to-end vector (R2> have been performed by Elderfield (1980). 
Lawrie (1976) has also evaluated A2. Both these workers and Burch and Moore 
(1976) have attempted to relate the conventional z parameter in the traditional 
two-parameter theory of polymer excluded volume (e.g. Yamakawa 1971) to the 
scaling variable which describes the strength of excluded volume interaction in the 
renormalisation group theory. Since the two-parameter theory for small z shows 
apparent agreement with experiment, the latter identification is effectively with a 
renormalised empirical parameter rather than the microscopic z parameter. 

The simplest case involves fully developed excluded volume, the self -avoiding walk 
limit. Here, the renormalised interaction parameter becomes totally insensitive to 
microscopic parameters such as those of the two-parameter theory. The situation 
becomes more complicated in the crossover regime where there are two theoretical 
goals to be distinguished. The first involves the description of long-wavelength 
observable macroscopic quantities in terms of the macroscopic renormalised interac- 
tion parameter, while the second focuses on the calculation of this renormalised 
interaction parameter in terms of truly microscopic interactions. The former problem 
is convenie.itly treated within the renormalisation group by virtue of the fact that 
these macroscopic relations can be correctly deduced with very simple microscopic 
models containing only the most essential information concerning the general nature 
of the interactions, The second problem, on the other hand, requires the treatment 
of detailed, realistic microscopic interactions, producing a complicated many-body 
problem that has not been attempted for the polymer excluded volume problem. 
Thus, while the renormalisation group calculations do provide an expression for the 
renormalised interaction parameter in terms of the microscopic ones, this part of the 
calculation pertains only to the simple microscopic model invoked. 

Lawrie (1976) attempts to calculate the renormalised interaction parameters by 
using the characteristic equation of the renormalisation group equation as analogues 
of differential recursion relations (Nelson and Rudnick 1975) describing how the bare 
microscopic quantities become converted into the macroscopic interaction parameters 
during the renormalisation process. However, this analogy is questionable since the 
homogeneous renormalisation group equations used by Lawrie can be defined only 
in the macroscopic limit (i.e., only in the critical regime). Elderfield simply identifies 
z with a complicated quantity which is essentially vN'/2 (for E = 4 - d with d the 
spatial dimensionality) when the renormalised interaction parameter U is small and 
when N is the renormalised chain length. Elderfield's identification of z is in the 
same spirit as the use of the conventional two-parameter theory expressions to fit to 
experimental data, where z then effectively takes on the role of the appropriate 
renormalised quantity. It should be stressed that nobody has yet succeeded in deriving 
a self-consistent relationship between the microscopic conventional two-parameter 
theory z parameter and the macroscopic vN'/2 quantity. 

The renormalisation group equation determines the proper scaling variables 
describing the excluded volume dependence of macroscopic observable quantities. 
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When the renormalised perturbation series for A2,  (R’), etc are rewritten in terms 
of the scaling variables dictated by the renormalisation group equations, the desired 
universal functional representation of these macroscopic observables is obtained. This 
enables us to present the excluded volume parameter dependence of the end-to-end 
vector distribution function, the coherent scattering function, (R’), (S’), A2 and the 
penetration function ?!, defined in 3-space by 

?! = (1.1) 
with N A  Avagadro’s constant and Ju, the molecular weight. The value of ?! in the 
self-avoiding chain limit has already been evaluated by Witten and Schafer (1978), 
but the most interesting crossover behaviour is evaluated here. 

We impose the stringent requirement that the theory properly reproduces the well 
known and more simply derived limits of the Gaussian chain and of the self-avoiding 
walk. Because of this criterion, we explicitly show that the expansion factors, 

a’= (R2) / (R2)o  and a? = ( S 2 ) / ( S 2 ) o ,  (1.2) 

where the subscript 0 denotes the values for the Gaussian chain limit, are not universal 
quantities dependent only on the single excluded volume strength parameter. 
However, it is also demonstrated that they are approximately universal quantities 
when the renormalised interaction parameter is small and the chain length is sufficiently 
long. Thus, it is possible to construct an approximate universal plot of ?! versus a:. 
Although the crossover behaviour between the Gaussian self-avoiding walk limits is 
different from the crossover between the @-point and the self-avoiding chain limits, 
the resultant universal plot appears to be in reasonable accord with experiment. 
Additional experimental and theoretical work is desirable to establish the degree of 
non-universality and the role of three-body interactions. Our non-universal behaviour 
for certain quantities contrasts with the universal behaviour given by Elderfield (1980). 
He essentially assumes their universality and employs a finite renormalisation to 
ensure this universality. However, this then implies that his crossover formulae do 
not tend to the proper self-avoiding walk limit. Our desire to reproduce correctly 
this limiting result then requires the presence of some weak non-universality with 
apparently no available experimental implications. 

The crossover behaviour of the end-to-end vector distribution function is studied 
in 0 2 and the non-universality of the expansion factor a’ = (R2)/(R2), ,  is shown. The 
crossover behaviour of the static scattering function is evaluated in P 3.  The second 
virial coefficient A2 and the interpenetrating function ?! are calculated in 9 4, and the 
?! against a: = ( S 2 ) / ( S 2 ) , ,  relation is compared with experimental results. Section 5 
consists of a discussion which contains an explanation of why a’ or a: are non-universal 
quantities when the crossover calculation is required to reproduce the Gaussian and 
self-avoiding walk limits. 

2. G(R, N) as a function of interaction parameter 

2.1. ‘Microscopic ’ model 

The model is defined through the bare dimensionless Hamiltonian, 

H Q ( e ) = i j o  N o  (7) dc(7) d r + f v o I  d l - j  ~ ~ ‘ S ( C ( T ) - C ( T ’ ) ) ,  
?‘--T’l*Q 
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where c(7 )  represents the continuous chain conformation with the contour parameter 
7 in [O, Nu],  uO(>O) is the bare coupling constant, No is the microscopic measure of 
the chain length, and a is a cut-off contour length to eliminate self-interactions of 
(monomer) units. The word microscopic is understood in the ‘kinetic’ sense explained 
in our previous paper V (Ohta et a1 1981). If vo vanishes, then (2.1) gives Gaussian 
chain behaviour, while in the v0Nf,’* +co limit, (2.1) is a good model of the self- 
avoiding walk (Edwards 1965). Thus, the Hamiltonian (2.1) can be employed to 
analyse the dependence of quantities on the strength of the excluded volume, i.e., the 
crossover behaviour between the simple random walk and the self-avoiding random 
walk limits. 

Here it must be stressed that (2.1) cannot describe the region near the @-point. 
As noted in previous papers, (Oono and Oyama 1978, Oono 1976, Oono and Freed 
1981, de Gennes 1975) near the @-point there is a very subtle cancellation between 
the attractive effects of the two-body interactions and the repulsive effect due to 
multiple collision of units. Therefore, a description of the @-point region requires 
the addition to (2.1) of an extra term which describes effective three-body interactions; 
however, for long chains this region is expected to be rather small. 

The microscopic model, defined by (2.1), can be used to evaluate the bare partition 
function GB(R, NO, vO; a )  for a chain of length No with the fixed end-to-end vector 
R. An explicit calculation (Oono et a1 1981) of GB by the &-expansion method 
demonstrates that singularities appear at E = O  in the a + 0 limit. The presence of 
these singularities implies that GB depends very strongly on short-wavelength micro- 
scopic details. 

2.2. Extraction of macroscopic universal picture or renormalisation 

It can be shown that the strong dependence of GB on the microscopic details presents 
no difficulty if we introduce microscopic-macroscopic relations which are defined to 
absorb all the singularities. The cut-off length a cannot be estimated from the usual 
long-wavelength (macroscopic) experiments. Hence, even if the molecular weight is 
known, the corresponding model parameter No cannot be observed, since the model 
chain has short-range characteristics which cannot be perceived in long-wavelength 
experiments. Likewise, the microscopic small-scale excluded volume U ( )  is not separ- 
ately observable in long-wavelength experiments. However, there must be corres- 
ponding macroscopic parameters N, which designate the length of the chain, and U 

which represents the solvent quality. Long-wavelength experiments are characterised 
by an observational length scale L where L >>a or a monomer size. 

The observable end-to-end distribution function is proportional to the partition 
function, expressed in terms of N and U ,  G(R, N, U ,  L )  where L is equivalently 
representative of the scale of coarse-graining microscopic details to generate the 
macroscopic description. This G(R, N, U ,  L )  must be proportional to GB(R, No, u0, a )  
because when normalised they must both provide the same end-vector distribution 
function. Thus, we have the set of microscopic-macroscopic relations, 

(2.2) 

U = v(uO, a / L )  with v (0 ,  a / L )  = 0 (2.3) 

G(R, N, v ;  L)  = lim ZGB(R, NO, 00;  a).  (2.4) 
a/L+O 
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In (2.2) and (2.4), Z2 and Z may depend on vo. Both N and No must be proportional 
to the molecular weight, so N and No must be proportional to each other. Equation 
(2.3) must be independent of N (or No) because interactions are local occurrences. 
Introducing the dimensionless interaction parameters, 

U ( )  = v()L"~ and U = u L € / ~ ,  (2.5) 

for convenience, enables (2.3) to be rewritten as 

U = u(uo,  a / L ) .  

If the limit a/L+O is not taken, then (2.2) and (2.3) might be utilised to calculate 
bare quantities from the renormalised quantities. However, in the a / L  + 0 limit, these 
relations develop singularities in E and should be handled with caution. This is 
discussed in the next subsection. 

2.3. Renormalisation group equation and its general solution 

Since GB is defined microscopically, it is independent of the macroscopic length scale 
L which is imposed by the experimental conditions. Hence, it follows that 

(2.6) 

The seemingly vacuous statement (2.6) is combined with (2.2)-(2.5) to produce the 
renormalisation group equation, 

L(a/aL)GdR, N ~ ) ,  v u ;  a)lN~l,u(,,a = 0. 

(2.7) 

This equation governs the functional form of G. The macroscopically observable G 
must also satisfy (2.7) in the a / L  -* 0 limit. The quantities p, y l ,  y 2  are defined by 

(2.8) 

(2.10) 

The values of p, y l ,  and y 2  are already given in paper I11 (Oono et a1 1981) in the 
a / L  + 0 limit as 

@ ( U )  = T - 2 u ( u * - u ) + o ( u 3 ,  & U 2 ) ,  ( 2 . 1 1 ~ )  

y1(u) = y 2 ( u ) + 0 ( u 2 )  = (27r)-2u + 0 ( u 2 ) ,  (2.1 l b )  

where the non-trivial fixed point U* is the solution to P(u*)  = 0, 

U* =i&7r2+o(&2). (2.11c) 

Note that paper V (Ohta et a1 1981) also presents these results for non-zero a / L  in 
the a / L  + 0 limit. The calculation employing renormalisation with a / L  # 0 yields the 
same final result for macroscopic quantities. 
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The general solution of (2.7) is 

(2.12) 

where F is an arbitrary well behaved function, and u1 is a constant. The value of u1 

and the function F are interrelated such that (2.12) is satisfied. Since we consider 
(2.7) in the limit a/L+O, the solution (2.12) should be independent of a. Hence, u1 
cannot have a microscopic meaning, so (2.7) is applicable only after a sufficient 
coarse-graining procedure. Then the renormalised interaction parameter u lies 
between 0 and U* since U* corresponds to the full self-avoiding limit. Therefore, u 1  
must be chosen in the macroscopically accessible region between 0 and U*. For 
simplicity, u1 is taken as u*/2. 

As explained above, we do not consider the renormalisation group equation as 
providing a connection between microscopic and macroscopic quantities since more 
microscopic details are required to evaluate, for instance, the macroscopic U. The 
equation is consequently meaningful only in providing a macroscopic description. 
Therefore, the characteristic equations of (2.7) cannot be used as analogues of the 
differential recursion relations employed in the Wilson-Kadanoff type renormalisation 
group theory. 

It may seem possible to make connection between u0 and u by simply inverting 
the u-uo relation, which is determined to absorb some of the divergences appearing 
in the a/L + 0 limit (Oono et a1 1981), 

(2.13) 

to obtain uo as a function of U. However, the coefficient of U: is singular in E ,  so that 
it cannot be used to replace u by ull in the &-expansion series. This difficulty can be 
seen more easily when the dimensional regularisation method is not used. If the 
cut-off contour length a is left finite, this relation is found to be (Ohta et a1 1981) 

U = U[)- (2/ET2)U; -t o ( U ? ) ,  

U = u0 + Y ’ U :  In(a/L) + . . . . ( 2 . 1 3 ~ )  

The dependence of U on a/L clearly shows that the u-uo relation can only be used 
to extract macroscopic functional relations, i.e., the dependence of macroscopic 
quantities such as G on the macroscopic U corresponding to the observational length 
scale L. Equation (2.13) or ( 2 . 1 3 ~ )  implies that macroscopic measurements cannot 
be utilised to invert the macro-micro relations to provide values of the bare quantities. 
The macroscopic observables cannot be expressed simply in terms of microscopic 
quantities in the a / L  + 0 limit. Practically, this means that the macroscopic observables 
are highly involved (highly coarse-grained) functions of microscopic quantities. Lax 
el a1 (1978) suggested a simple relation between the scaling variable and microscopic 
quantities in the case of the lattice polymers. However, as is summarised by Tanaka 
(1980), the situation is not that simple. He calculates the ratio C, of the conventional 
z parameter from computer-experiment data and the parameter z’ which produces 
an apparent universal a3-z’ relation (O<z ’<  15) where a is the expansion factor. 
He finds that C, attains its constant asymptotic value only for walks longer than about 
10’ steps. This demonstrates that (approximate) universal relations involve a large 
number of monomer units, so the macroscopic variables of the universal plots inevitably 
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become many-body quantities. Having stressed that macroscopic variables like U are 
complicated coarse-grained functions of the microscopic system, we return to the 
consideration of writing (2.12) more explicitly in terms of N, v, and L. 

By using (2.11) and defining the variable 

w = U / ( U *  - U), (2.14) 

(2.12) is found to become 

G(R, N, U ;  L )  = [2 / (1+ w)] ' /~F(Lw- ' / ' ,  N [ 2 / ( 1 +  w)]'l4, R). (2.15) 

Combining (2.15) with the scaling invariance relation (i.e. simple dimensional analysis) 
of G, 

(2.16) G(R, N, U ;  L )  = S - ~ / ~ G ( R S - ~ / ' ,  NS-' ,  U ;  LS- ' ) ,  

and choosing the arbitrary scaling parameter as 

s = N [ 2 / ( 1 +  w ) ] " ~ ,  (2.17) 

equation (2.15) reduces to a function of two variables 8 with 

G(R, N, U ;  L )  = N-~+./' [2 / (1+ w)1-1/4+48 
x 8 [ L N - ' [ 2 / ( 1 +  ~ ) ] - ' / ~ w - ' / ' ,  RN-' / ' [2/(1+ w)]-'/']. (2.18) 

Note from (2.14) that w + 0 yields the Gaussian limit where G depends only on 
, while in the self-avoiding walk limit, w tends to infinity. ~ ~ - 1 / 2  

Introducing the scaling variables 

L =  ( 2 v N / L ) " / ' w ( l +  w)-'" ( 2 . 1 9 ~ )  

x = R'( I+ w ) i / 4 / 2 ~  (2.19b) 

converts (2.18) to the form 
G(R, N, U ;  L )  = N-'+€/'-€C/8(l+C)LEN8('+C) F l W ,  5L (2.20) 

where numerical factors are suitably absorbed in the definition of F1. Equation ( 2 . 1 9 ~ )  
can be rearranged to order E to yield 

( 1  + w)'l4 = [1+ 5(1+ 5)"/8]'/4(2.irIv/L)-EC'8~'+C', 

w becomes infinite when U + U*, i.e., in the self-avoiding walk limit. In order that G 
of (2.20) exists in this limit, F l  must depend only on the single variable x = X5-(1+E/8)/4,  
which is the usual scaling variable in this limit and which is the only combination of 
X and 5 to be defined in the w -* 00 limit. 

2.4. Determination of F l ( X ,  5) 
Paper I11 provides a derivation of G to O(u,  E )  as 

G(R, N, U ;  L )  = (27rN)-'+'/' expi-a +[u/(27r)'] 

x [ l  + a  + ( 1  -a)(+ +In a )  - ( 1  -a) In (27rN/L)}, (2.21) 

where + = 0.577 . . . is Euler's constant and a = R 2 / 2 N .  To determine F l ,  it is merely 
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necessary to rewrite (2.21) using the scaling variables (2.19). After simple rearrange- 
ment and partial discarding of higher order terms than order E ,  we get 

G(R, N, U ;  L )  
= ( 2 ? r ~ )  - 2 + ~ / Z - ~ r / 8 ( 1 + 5 ) ~ 6 / 8 ( 1 + c )  [x(l+ ~)-1/4]~C/8(1+5) 

€18 -1/4 l + s l / 8 ( l + t )  x exp{ -[XU + L U +  t )  ) I 

(2.22) 

Here we introduce effective exponents which explicitly depend on the crossover 
parameter. This procedure is used in critical phenomena (Nelson and Dominy 1976). 
As C + 0, (2.22) can be approximated by 

G(R, N, U ;  L )  
= (2 ?rN) -2+ E / 2 - - E c / 8 x  E r / 8  

x exp[-X(1+ 5)-1'4-El/32 + (1 - ?)i&[X + : E l (  1 + 91 .  (2.23) 

If 5 = 0, (2.23) turns out to be the zeroth-order Gaussian distribution. In the opposite 
5 + Q) limit, equation (2.22) recovers our previous result for the case of self-avoiding 
polymers (Oono et al 1981). 

The mean square end-to-end distance is obtained from (2.22) as 

(2.24) 

( 2 . 2 4 ~ )  

Using (2.22) and (2.24) enables the density distribution function for r = R / m  to 
be obtained as 

This is a universal function of the scaling variable 5. It reduces in the l+ CO limit to 
our former resultt (5.5) of paper 111. Figure 1 displays the general features of equation 
(2.25) as a function of 5. Substitution of (2.19a) into (2.24) converts the latter to the 
equivalent form 

(2.26) 1 + (2~rN/L) ' /~w 
l + w  

(R2) = 4N( 

If w is small, equation (2.14) gives w CC U. Then if N is also sufficiently large, equation 
(2.26) reduces to 

( R * > = ~ N ( ~ ~ T N / L ) ~ / ~ U ~ / ~ .  (2.27) 

t Unfortunately, there is a small numerical error in the coefficient of (5 .6)  in Oono er a1 (1981); 1.5 should 
read 1.4. However, our semiquantitative conclusions remain intact. 
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r r 

Figure 1. The crossover behaviour of the end-vector distribution function in 3-space. (a ) ,  
The density distribution function for the normalised end-vector r = R/(R2)1'2.  ( b ) ,  The 
density distribution functions for Irl, i.e. 4 r r 2 f ( r ) .  The numbers beside the curves denote 
[. [ = 0 is the Gaussian case and [ = 03 the self-avoiding case. 

This is equivalent, to order E ,  to the well known result 

( R 2 ) ~ N 6 / s ~ 2 / 5  

or to the asymptotic ( z  + 00) result given by Elderfield (1980), 

(2.28) 

(2.29) 

where p o  = 2v - 1 and z = wNE12 to order E .  In our notation (2.29) results essentially 
by redefining the new chain length as 

N ' = d N ( l +  

to absorb the non-universal factor (1 + w)-li4. Elderfield assumes (R2)  to be a universal 
quantity to obtain (2.29). Hence, he fixes N' = (R2)8, so in our notation and to order 
E his results are in the universal form 

where 5' is given by 

5' = ( 2 7 ~ ( R ~ > & - ~ ) " ~ w .  (2.296) 

When U + U* but (R2)8 remains finite, we have w + 00. Hence, ['+ 0O and (R2)  of 
( 2 . 2 9 ~ )  becomes infinite at fixed finite in contrast to our previous calculation 
(Oono et a1 1981) at U = U * ,  

(R2)U=u* = 4 ( 1 - 2 ~ ) ( 4 7 7 L - ~ ) ~ / ~ N ~ + & ' ~  <00.  

An infinite value of ( R 2 )  of ( 2 . 2 9 ~ )  for U = U* contradicts the rigorous results of 
Westwater (1980) concerning the finite value of this quantity. Hence, we must conclude 
that the choice of N' as the renormalised polymerisation degree is physically inap- 
propriate to describe the full crossover from the Gaussian to the self-auoiding chain 
limits. 
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On the other hand, equation (2.28) follows from blob arguments (Farnoux et a1 
1978) if U is very small and uNE12 is very large. Our result (2.26) reduces to (2.28) 
for small w (or U), and it also produces the well defined self-avoiding walk limit when 
w tends to infinity where (R2)  remains finite if N is finite. 

2.5. Non-universality of a2 

The non-universal factor ( 1 + ~ ) - ' / ~  in (2.26) is crucial in obtaining the sensible 
asymptotic behaviour discussed at the end of the previous subsection. Thus, we are 
forced to conclude that the expansion factor a2,  defined by c y 2  = (R2) / (R2)u=o,  cannot 
be universal if we require these functions to reproduce correctly both Gaussian and 
self-avoiding limits. a* is represented to O ( E )  in the two equivalent forms: 

1 + C( 1 + 5)"/* ) (1-") 5 
l + w  8 1 + 5  

(2.30) 

( 2 . 3 0 ~ )  

a 2  has been believed to be universal, but the existence of an explicit dependence of 
( 2 . 3 0 ~ )  on L clearly shows its non-universality. This conclusion readily follows from 
the structure of the scaling variable X in (2 .196) .  The quantity R 2 / 2 N  is not a scaling 
variable, and the ( 1  + w)ll4 factor must appear to produce one. Furthermore, in the 
language of critical phenomena a corresponds to {/So, where 5 is the correlation 
length of the d4-theory and lo is that for the corresponding Gaussian model. Such 
a quantity cannot be universal in the theory of critical phenomena. A simple explana- 
tion of the non-universality of a' is given in § 5 .  

If w is small and N is sufficiently large, then the definition 

2 = (2.lrN/L)"I2w (2.31) 

enables (2.30) to be recast into 

= ( 1  + 
1 -s , 

a q - )  l + i  l I 4  ( 1 - - - )  & i 
l + w  8 l + i  +i (2 .32)  

so that a2 is approximately universal, i.e., there is a variable i in terms of which a2  
can be expressed without any other polymer dependent parameters. Previous authors 
(Burch and Moore 1976, Lawrie 1976, Elderfield 1978, 1980) have attempted to 
connect i or some corresponding parameter and a renormalised interpretation of the 
conventional two-parameter theory parameter z (Yamakawa 197 1 )  which is thought 
to be proportional to uONEI2. However, this search for an internally consistent relation 
between z and 2 has been unsuccessful. As explained in subsection 2.3, the many-body 
nature of the macroscopically observable excluded volume implies that there cannot 
be such a relation. No universal relation between z and 2 exists. Moreover, the z 
of the conventional two-parameter theory is seemingly well defined. However, it 
cannot be, since the effective unit of the chain is not uniquely defined. It therefore 
clearly follows that the determination of z by using existing 'theories' (pseudotheories) 
is simply meaningless. Indeed, Yamakawa (1971) cleverly avoids the estimation of 
his p (corresponding to the present vo). However, this is a major retreat from an 
original aim of the two-parameter theory. 
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3. Mean square radius of gyration 

The coherent scattering function in the self-avoiding limit is calculated by Ohta et a1 
in paper V (1981). For the general interaction parameter, the solution of the renormali- 
sation group equation for S(N, k), 

[L(a/aL)+p(u)(a/au)+~3(~)+~2(u)N(~/aN)IS(N, k, U ;  L)=O, (3.1) 

where y3 (u )  = y2(u )  + O(u2),  combined with the scaling property of S(N, k) fixes the 
functional form as 

S(N, k, U ; L) = N2( 1 + w ) - ' / ~ F (  Y, f )  (3.2) 

with the scaling variable 

(3.3) y='  Zk 2 N / ( w  + l)1'4. 

The normalised scattering intensity 

I ( k , N ) = S ( N , k ,  u ; L ) / S ( N O ,  u ; L ) = f ( Y , f )  (3.4) 

can be obtained by rewriting the result for (3.4) given to order U and E in paper V 
in terms of scaling variables. From this form off, we finally obtain 

l + w  (3.5) 

The dependence off on C is small in the experimentally accessible region of Y values. 
The detailed formula is given in appendix 1. This weak dependence on f can be 
expected from the closeness of I for the self-avoiding walk and Io for a Gaussian 
chain shown in paper V. Combining (3.5) and (3.26) produces the universal relation 
(see appendix 1) 

@=L(l-LL)+o(&). 
(R2)  6 96 l + f  (3.6) 

Unfortunately, the l dependence of this universal ratio is rather small. The expansion 
factor for ( S 2 )  defined by a? = ( S 2 ) / ( S 2 ) , = ,  is given by 

(3.7) 

(3.7a) 

Again as in the case of a2  discussed in § 2.5, equation ( 3 . 7 ~ )  depends on w, so a: is 
not a universal ratio. However, if w is small and N is large enough, then an approximate 
universal form, 

as 2 - ( l + z )  A 1 / 4  (1-%E-) 13 
2 

l + i  ' (3.8) 

is once more obtained. 
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4. Osmotic second virial coefficient 

Using the McMillan-Mayer theory (McMillan and Mayer 1945) of solutions the second 
virial coefficient is defined for chains of unequal lengths No and MO by 

A Z B W O ,  MO) = -[(pz(No, MO) - ~ i ~ ~ o ~ ~ ~ ~ ~ o ~ ~ / ~ ~ ~ ~ o ~ ~ i ~ ~ o ~ ~ ~ ~ / ~ ~ ~ ~ ~ ~  (4.1) 

where P1(No) and P1(Mo) are the partition functions for chains of lengths No and MO, 
respectively, and P2(No, MO) is the partition function for a pair of interacting chains. 
Ax is the molecular weight of X .  If NO = MO, it is necessary to include the symmetry 
number as 

ASBWO) = h 2 B ( N o ,  No).  (4.2) 

The bare second virial coefficient to O(E,  U )  calculated by using the dimensional 
regularisation is given as 

AzB(No ,  Mol 

- NOMONA 2vo 2 ~ N o M o  uo 1 - 7  -+-+ln ( (27) [f L(No+Mo) 
- 

.UN~AM~ 

(4.3) 

where NA is Avogadro's constant and the calculation is summarised in appendix 2. 
The renormalised second virial coefficient is defined in the a / L  + 0 limit as 

A z ( N ,  M, U ;  L )  = A Z B ( Z T 1 N ,  Z;'M, U O ( U ) ;  a ) ,  (4.4) 

and is finite in this limit. Zz is already defined in 9 2 equation (2.2). Thus, introducing 
Z2 and u( ) (u )  into (4.3) and (4.4) yields 

Az(N,  M, U ;  L )  

where = AN(), AM = AM,), are utilised. 
The renormalised group equation for AS is derived from (4.2) and (4.4) as 

Combining the general solution of (4.6) and the scaling property of AS, 

A; = S ~ - " ~ F ( N S - ' ,  Ls-', U )  

A S = [ N / ( l + w )  1 f ( S )  

(4.7) 

the functional form of AS is fixed as 

(4.8) 

where f is some well behaved scaling function. Comparing (4.5) and (4.8), the scaling 

1/4 2 - ~ / 2  
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form is obtained as 

In the self-avoiding polymer limit, (4.9) reduces to 

a N 2 - f E I A $  = Nud/Jbl$aNvd-2.  (4.10) 

Equation (4.5) becomes in the same limit 

A,(N, M )  a ( N M ) ” ~ / ~ / A N J U ,  a ( N M ) ~ Y ~ - ~  if N - M  ( 4 . 1 1 ~ )  

a ( N / M ) M ” ~ / A & ,  a M Y d - 2  if N (4.11b) 

This result agrees with that generated by de Gennes’ blob argument. Elderfield 
(1980) also obtained a similar result, but unfortunately in his paper the equation 
corresponding to (4.1 l b )  is given for the case of N << M. The crossover from (4.1 l a )  
to (4.11b) can be represented by the universal ratio 

~ ( 6 )  =A2(6M, M ) / 2 A ; ( M )  = exp{-k~[4 In 2-(Ji+dg-’)2 In (1 +,$-‘)I}, (4.12) 

where 6 = N / M .  This function is shown in figure 2 for a polymer chain in E -space 
(E = 1). Q almost reaches its asymptotic value around 5 = 5 .  Near 6 = 1, (o decreases 
exponentially. As a function of x = 6- 1 = (N  - M ) / M ,  Q behaves as 

(x - 0) .  (4.13) 

Figure 2. The universal ratio cp defined by (4.12) in 3-space. 

The interpenetration function 9, defined by ( l . l ) ,  is readily calculated from (3.5) 
and (4.9) to be, 

E( exp[-4 In 2 + &5(-1+ 61n2)/(1+ 5)] 
9= 2--E/T. 

16[1+5(1 +5)E18]1 -E/8 [g (  1 13 - -E - ) ]  5 
96 l + r  

(4.14) 

Note that 9 is a true universal quantity, dependent only on the scaling variable 5. In 
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the self-avoiding limit C+ 00, (4.14) reduces to 

** = 
E exp(-QE +a In 2) 

16[%d(l- 1 3 ~ / 9 6 ) ] ~ - " ~ '  
(4.15) 

When E is set to 1 and d = 3, then "* = 0.231. However, if d times (1 - 13e/96) is 
expanded in E, the result is different. So this order 9* is somewhat unreliable with 
regard to the manner in which higher order terms are retained. Witten and Schafer 
(1978) obtained ** = O.268* 100%. We think that d in (4.15) should be set to 3 
and not &-expanded, so we adopt **=0.231 henceforth. 

If w is small and N is large enough, then 5 in (4.14) can be simply replaced by 
2. Then using P as a function of 2 and equation (3.8), a conventional P against a lplot  
can be made as is shown in figure 3. The theoretical model is, strictly speaking, not 

I 

Figure 3. Approximate universal plot of Y against a:. As is explained in the text, a, is 
not a universal ratio in contrast to the true universal one Y. The plot is, strictly speaking, 
not universal. However, for sufficiently small renormalised interaction parameters, the 
plot is universal to a good approximation. (a) Compares our result, OF obtained from 
(3.8) and (4.14). with other curves given in Yamakawa's book (1971). 4,: V =  
[ln(l+2.30z/(r:)]/2.3 with a: -a: =2.60r, F,: Y=[ln(l+5.73z/a:)]/5.73 with a: - 
a: = 1.2762 and Y :  Y=0.547[1-(1+3.903z/a:)-04683] with a: =0.541+ 
0.459(1+ 6 . 0 4 ~ ) O . ~ ~ .  The experimental data involves polychloroprene in ( b )  (Norisuye 
er a1 1968) and polystyrene in (c) (Berry 1966). FO and F,,, fail to produce the correct 
finite limit to 9, so these results are unsound. Y may seem the best fit to the data. 
However, this curve has no sound theoretical basis; its derivation involves ad hoc 
assumptions. Note that our theory contains neither adjustable parameters nor ad hoc 
procedures. 
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capable of describing the situation very near the @-point because of the omission of 
three-body effects, but for long chains this region should be very small. 

Figure 3 contains comparisons with experimental data over the full available region 
of as. The agreement with experimental data is encouraging. Figure 3 ( a )  compares 
our theory with other existing theories. Flory’s theories (Flory and Krigbaum 1950, 
Flory 1949, Orofino and Flory 1957, Stockmayer 1960) fail to give finite values for 
P in the self-avoiding walk limit. The curve of Yamakawa and co-workers (Kurata 
et a1 1964, Yamakawa 1971, Yamakawa and Tanaka 1967) seems best fit to the 
experimental data. However, the approximation of the theory is questionable. We 
must stress that our theory represents the first approximation in a well defined scheme; 
there are no adjustable parameters nor ad hoc procedures involved. 

5. Discussion 

The polymer conformation space renormalisation group method has been used to 
calculate the crossover behaviour between the Gaussian and self-avoiding polymer 
limits of the end-to-end vector distribution function, the mean square end-to-end 
distance, the mean square radius of gyration and osmotic second virial coefficient. 
The crossover behaviour describes how these properties vary with the strength of the 
phenomenological excluded volume parameter and it correctly reproduces the 
Gaussian and self-avoiding limits. Our calculations explicitly show that the expansion 
factors for the radius of gyration and mean square end-to-end distance cannot be 
universal, i.e., they are not functions of a single renormalised excluded-volume 
parameter when required to describe the full crossover behaviour from the Gaussian 
to the self-avoiding chain limits. These conclusions stand in marked contrast with 
previous assumptions of the ‘two-parameter’ theories (Yamakawa 197 1) that these 
quantities are universal (i.e., they have been thought to depend only on the z parameter 
defining the strength of the excluded-volume perturbation). 

The simplest argument to derive this ‘two-parameter’ picture involves elementary 
dimensional analysis. Since we are interested in very long polymer chains, the con- 
tinuous chain model can be exploited. The simplest model is the one given in § 2. It 
only contains three dimensional parameters No, v0  and a,  the minimum possible 
number. Two independent dimensionless quantities N o / a  and voN:’2 can be construc- 
ted from these parameters. Dimensional analysis then implies, for example, that 

( S 2 )  = Nof(voN“’2, N o l a ) .  (5.1) 
Henceforth, the symbol f is used repeatedly to denote some function appropriate to 
the context. Since the chain is very long, the microscopic scale a should be unimpor- 
tant. Or, following the standard argument of dimensional analysis that very large or 
very small dimensionless quantities should become irrelevant, we have 

( S 2 )  = N o f ( z ) ,  (5.2) 

( 5 . 2 ~ )  

where z is the conventional parameter z Cc v0N“”. 
However, equation (5.1) is not well defined in the a + O  limit, and this affects 

properties at the interesting cases of d = 2 and 3. Therefore, the crucial step of 
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ignoring Nola from (5.1) to obtain (5.2) is illegitimate. Equation (5.2) does not follow 
from (5.1). The renormalisation procedure involves the introduction of extra 
dimensional quantities N, v and L where L represents the observational length scale 
L >>a. Thus, we have for instance, 

(S2) =Nf(u ,  NIL;  NINo, Vivo, alL),  (5.3) 

where N/N,  and V I V O  are so chosen that the singularities introduced in the long- 
wavelength a /L  + 0 limit are cancelled by these choices. Hence in the macroscopic, 
a / L  + 0 limit, we are left with 

(S2> = Nf (U, NIL),  (5.4) 

= Nf( l ,  U), (5.5) 

= Nf (1; NIL),  (5.6) 

or 

or 

where the scaling variable l is given by ( 2 . 1 9 ~ )  and is analogous to z in having the 
same NE’* dependence. Using (5.5) for example, the expansion factor is obtained in 
the form 

(5.7) 2 
as = f ( L  u) l f (O, O)=g(5 ,  U). 

Hence, in general, CY: cannot be a universal function of only l. However, fortunately 
if U << 1 and N >> 1, then we find g(5,O) - g ( l ,  U), and equation (5.7) turns out to be 
approximately universal, 

U < <  1, N >> 1, (5.8) 
2 

as = g ( l ,  01, 

i.e., for U << 1 and N >> 1 the separate u-dependence can be ignored. 

this paper, the penetrating function Y is a true universal function of l, 
As is already discussed by Witten and Schafer (1978) and also explicitly shown in 

*= *(l). (5.9) 
Because 5 (like z of the two-parameter theories) is not directly measurable, it has 
been customary to eliminate 5 (like z )  between a pair of macroscopic variables to 
obtain interrelations between observables. The a? -9 relation has been considered 
widely because it was believed to be universal. Our derivation, by contrast, demon- 
strates that it cannot be. The relation takes the functional form of 

*=f(ay,3, U). (5.10) 

However, again if U is small and N is large enough, the U dependence of (5.10) 
becomes negligible and (5.10) becomes approximately universal, 

=fb? ), U << 1, N >> 1. (5.11) 

The approximate equation (5.11) obtained to order E is compared with experimental 
data and other theories in figure 3. The agreement between our result and experiment 
is very good. However, the data appear to indicate a polymer dependence of the 
limiting Y* value at large excluded volume, whereas the theory shows Y* to be a 
universal constant in the limit of [+ 00. This conclusion remains independent of the 
approximation involved in passing from (5.10) to (5.1 1). Hence an experimental 
revaluation of this point is desirable. 
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The theoretical analysis is not valid in a small neighbourhood of the @-point for 
long chains as emphasised previously. A correct theoretical description involves the 
introduction of effective three-body interactions whose physical origins (e.g. Oono 
and Freed 1981) can lie in the microscopic two-body interactions. Nevertheless, the 
fit to experimental data in figure 3 does not exhibit any serious deficiency due to the 
omission of the three-body interactions. This is in accordance with the result of the 
46 field theoretic consideration (Stephen 1975). The precise role of the three-body 
interactions must await their incorporation into the theory and further experimental 
studies. 

In the meantime it would be worthwhile to neglect cautiously the three-body 
interactions to consider the following interesting analyses. The universal relation (5.9) 
can be inverted to give 

5 = t (W,  (5.12) 

enabling 5 to be determined from experimental data on q. Since 9 attains its 
asymptotic limit for 5 - 20, only a limited part of the interesting range can be covered, 
(This seems to correspond to conventional empirical z - 7.) The molecular weight 
dependence [ C c  N 1 l 2  should be readily verifiable, and the temperature dependence 
of this highly renormalised quantity would be of interest. Given the empirical values 
of 5, the individual approximate relations for CY: against 2 = 5 (for w small) in (3.8) 
and the corresponding approximation for A2 generated from (4.9) can be tested to 
determine whether there are additional polymer dependences. If so (and still assuming 
the negligibility of effective three-body interactions), then the non-universality of A2 
and a: would be experimentally observable. 

Non-universal quantities can be expressed in terms of the variable NIL. It is 
tempting to interpret NIL as the effective number of segments in the chain given the 
observational or coarse-graining length scale L. However, just as the individual 
segment size is never a definable nor measurable quantity for long-wavelength proper- 
ties, parameters such as U and hence w depend on the value of L such that the 
macroscopic parameter 5 is independent of this choice of L in the a / L  + 0 limit. 

The macroscopic excluded volume interaction U represents a cooperative coarse- 
grained excluded volume interaction over a distance L. Thus, a difficult many-body 
problem is required to evaluate U in terms of the detailed microscopic interactions. 
In fact, for the purposes of actually calculating U, the simple model (2.1) is obviously 
insufficient; more details of the microscopic interactions are necessary. Tanaka (1980) 
underscores this point by noting that lattice Monte Carlo calculations for polymers 
yield universal (e.g., lattice structure independent) relations only when represented 
in terms of the parameter Czz, with z = voN6/2 the excluded volume perturbation 
parameter and C, lattice dependent. Since Tanaka finds that C, approaches its 
asymptotic value for walks of 2100 steps, a true microscopic theory of U would require 
the treatment of 100 units on the chain. 

Our formulation of the Gell-Mann-Low type renormalisation group method essen- 
tially gives up hope of calculating U from microscopic quantities, e.g., in terms of U(,. 
The theory notes the existence of the macroscopic parameter U and calculates the 
dependence of the macroscopic observables on this U. For these purposes the simple 
model Hamiltonian (2.1) is perfectly sufficient. 

Scaling theories of polymer solutions (de Gennes 1979) have been used only in 
the random walk and self-avoiding walk limits. However, experiments are generally 
never performed in these idealised limits. We show how general scaling laws for 
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polymers may be derived which depend on the excluded volume. These scaling laws 
thus have an additional scaling variable 5 beyond that for the random or self-avoiding 
walk limits. This makes it much more difficult to intuit the behaviour of the scaling 
functions in the crossover region. We. show here how the chain conformation space 
renormalisation group method can be used to derive the scaling laws as well as to 
calculate explicitly the scaling functions. Some applications of field theoretic renor- 
malisation group methods have been also applied to the description of this crossover 
behaviour. None have considered the wide variety of properties that are given here. 
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Appendix 1. The scaling form of the normalised scattering intensity (3.4) 

From paper V (Ohta et a1 1981) S(N, k, U ;  L )  is given to O(U, E )  as 

(Al . l )  

(Al.2) 

(A1.3) 

- Pt + pt2) + (p-' - p-2)A(-Pt  + pt2) 

(A1.4) 

1 - exp(-pt + pt2) 
p2 t ( l  - t )  

1 exp(-pt + pt2) - 1 + 
-p -2  e-'A(p)+p-' e-'A(p)+p-' e-', 

A(x)  = l,'dt(e' - l)/t 

Introducing p̂  = Y( 1 + f (  1 + 5)"'8)'/4 for convenience and combining terms yields to 

S(N, k, U ;  L )  = N 2  So(&)-- E l  -D(p^)+O(e2)] [ 8 1 + l  

= N ~ s ~ )  exp [ -k(1+ C)-'D(&)/S~(~^)I. (A1.5) 
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Since So(0) = $ and D(0) = 4, (3.7) implies that 

to O(&). 
Given the definition of (S2) ,  the radius of gyration squared, from 

P(N, k, U ; L) 1 - d-'(S2)k2 + 0(k4), 
equation (A1.6) can be expanded in powers of k2 (i.e., in p* )  to give 

P(N,k,  u ; L ) =  6 1 - 1 ( " 1 3 & ~ ) k 2 N [ 1 + ~ ( l + ~ ) ' l R ] ' ' 4 + O ( k 4 ) .  96 1+[ 

Comparing (A1.7) and (A1.8) produces the crossover form 

(Al.6) 

(A1.7) 

(A1.8) 

(A1 -9) 

This expression for ( S 2 )  can be combined with that for A2 derived in § 4 to provide 
the 5-dependence of of (1.1). 

Appendix 2. Calculation of osmotic second virial coefficient 

The diagrammatic expressions of PI and P2 are given in figure Al .  The values of the 
diagrams are found to be 

PI(NJ = 1 + ( u ~ ) / ( ~ T ) ~ ) [ ( ~ / E )  + 1 + ln (2~No/L)  + O ( E ) ~ ,  

A = 

a 
P , =  - + + ... 

P2 - P, P, 1: P2c = )-{ + 2 + 2 F'-I 
A B C 

Figure Al. The diagrammatic expression of PI  and Pz necessary to calculate the second 
virial coefficient. Pz, is the connected part of Pz. The full line implies the Gaussian 
propagator and the broken line the interaction. Compare with figure 11 or table 1 in part 
I (Oono and Freed 1981) for more detailed definition of the diagrams. 
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Therefore the bare Az8(NO, MO) is given by (4.3). 
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